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1. INTRODUCTION

In this paper we use functional analysis methods, namely the theory of
bases in nuclear Frechet spaces, in order to obtain results on polynomial
expansions of holomorphic functions. Let ~(O < R ~ (0) denote the
vector space of holomorphic functions on the open disc DR = {z: I z I < R}
with the topology of uniform convergence on compact subsets of DR . We
will consider the space ~ as a Kothe sequence space A R by mapping a
function fez) = L:~o akzk onto the sequence (ak)k'"o' Let (PnY!:=o be a
sequence of polynomials of degree n = 0, 1, 2, ... ; we will give a necessary
and sufficient condition for certain sequences (Pn)~=o to be a basis in one
fixed space ffR (0 < R ~ (0) (see proposition 1). In [4] and [5] Dragilev
gives necessary and sufficient conditions for (Pn)'::=o to be a basis in all
spaces ,~ (r > R), where R is a fixed positive number.

There are two important special cases: the Goncarov polynomials and the
remainder polynomials. Let (Zk)k~O be an arbitrary sequence of complex
numbers, the Goncarov polynomials GnCz; Zo ,..., Zn-l) are defined by
Go(z) = 1 and

n = 1,2,.. ,.

These polynomials are biorthogonal to the linear functionals LnU) =
pn)(zn), n = 0, 1,2,... , wherefE~ ,i.e. Ln(Gm ) = 0mn • The question, when
the Goncarov polynomials constitute a basis in ~, i.e. each f E~ is
uniquely representable by the series fez) = L:=of(n)(zn) Gn(z; Zo ,... , Zn-l)
(convergence in the topology of ~), was considered by many authors
(Goncarov [9], Evgrafov [6], Dragilev [4, 12]).
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The remainder polynomials are defined by Bo(z) == 1 and Biz; Zo,"" Zn-l) =
zn - L:~:~ Z~-li;Biz; Zo ,..., Zli;-l), n = 1, 2'00.. For a function j(z) =

L::~o ali;zk in~ , let Y denote the operator which transforms j into Yj(z) =
L:;:l akzk-\ and let yli; be defined as the kth successive iterate of Y. The
remainder polynolials are biorthogonal to the linear functionals

for jE~

and we have the problem of the unique expansion

< j(z) = I ynf(zn) Bn(z; Zo , ••. , Zn-l)
n~O

(see Pommiez [16], Dragilev and Cuhlova [5], Buckholtz and Frank [3]).
Let (dlC)'k~l be a nondecreasing sequence of positive numbers and define

the so called Gel'fond-Leont'ev [8] derivative of a functionj(z) = L:;=o ali;zk
in~ by

00

!?fij(z) = I dli;akzk- 1•

li;~l

This is a generalization ofthe orinary derivative, where dli; = k (k = 1,2'00')'
and of Y, where dli; = 1.

Denote by Qn(z; Zo "00' zn-l) the corresponding polynomials (see Section 2.)
biorthogonal to the linear functionals

In proposition 1 we characterize those sequences (Zlc)k~O and (dkYf:""l' for
which the corresponding polynomials Qn(z; Zo ,00" Zn-l) constitute a basis in
%R . With the help of proposition 1 it is possible to show that a basis of
polynomials Qn(z; Zo ,00" Zn-l) in~ is also a basis in any space %R' (R' > R).
For a given basis of polynomials Qn(z; Zo , ... , Zn-l) in %R' (0 < R* < (0) it
is now possible to ask for the greatest lower bound of the radii R of conver­
gence, for which the given polynomials Qn(z; Zo , ... , Zn-l) constitute a basis in
~ . We denote this infimum by W£d«Zli;)k~O) and derive a new determination
of the Whittaker constants W(EtI) with help of two theorems due to Frank
and Buckholtz [3] and Frank and Shaw [7]:

where the supremum is taken over all sequences (Zli;)k~O with I Zk I = d1-;11
(see proposition 5).
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The Whittaker constant W of the ordinary derivative is defined to be the
greatest positive number c with the following property: If, for an entire
function f, 7(f} = limn~oo sup Ipnl(O}j1/n < c and each of f, 1', 1", ..., has a
zero in closed disc i Z I = 1, then f = O.

Let

where the maximum is taken over all sequences (Zlc}~;:~ whose terms lie on
I z 1= 1.

Then

W = (lim H;,ln}-l = ( sup H!;,ln)-l
n-)OO l~n<oo

(see Evgrafov [6], Buckholtz [2]).
For the operator !7 define

where the maximum is taken over all sequences (Zlc)~;:~ whose terms lie on
I z! = 1.

Define

W(!7) := ( sup h~/n)-l = (lim h"!;.,ln)-l
l:<n<ro n.-4'X;

(see Buckholtz [lD.
With some restrictive conditions on the sequence (dlc)'k=l, set in general

J'Pn = max i Qn(O; Zo , ... , zn_1)1,

where the maximum is taken over all sequences (Zk)~:~ whose terms lie on
I z 1 = 1, and define

W(.~) := ( sup J'P~:/n)-l = (lim J'P~/n)-l
l<n<co n-»oo

(see Buckholtz and Frank [3]).
W(EC) is called the Whittaker constant belonging to the operator EC. If

we suppose some other restrictive conditions on the sequence (dk}k=l (see
Section 3. formula (3.6)), then we can sharpen proposition 1 to the following
result (proposition 4): The polynomials Qn(z; Zo , ... , Zn-l} constitute a basis
in ~ jf and only if for each r < R there exists a number r' < R such that

d d ... d M(r Q ) = O(r'n)1 2 n ,n· ,

where M(r; Qn) is the maximum modulus.
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Finally we give the solution of an interpolation problem with the help of
Proposition 4: for each functionfholomorphic in the disci Z I :( W~((z,,)~o)

there exists a uniquely determined function g holomorphic in the disc
I Z I :( W~((z,,)~=o) such that

enPfing(zn) = (j(nl(O»!n!

for n = 0, 1, 2, ... (see Proposition 6).

2. GENERALIZED GONCAROV POLYNOMIALS AND WH'ITTAKER CONSTANTS

LetfE~ andf(z) = L:;~o a"z". We define the so called Gel'fond-Leont'ev
derivative Pfi by

Pfif(z) = L d"a"z"-l,
"~l

where (d")~l is a nondecreasing sequence of positive numbers Let eo = do =
1 and eTc = (d1d2 ••• d,,)-l for k ;? 1; then the successive iterates Pfimof Pfi
can be written as

(2.1)

(see Gel'fond and Leont'ev [8]).
Now let (Zk)k~O be a sequence of complex numbers and define polynomials

Qn(z; Zo , Zl , ..• , Zn-l) by

Qo(Z) = I and

n-l

Qn(z; Zo, Zl , ... , Zn_l) = enzn - L en_"Z~-"Qk(Z; Zo ,Zl , ... , Z"-l) (2.2)
,,~o

for n = 1, 2,.... It follows (see Buckholtz and Frank [3])

where'\ EG,

n ~ 1

o=m =n

(2.4)

(2.5)

n

Qn(z; Zo ,... , Zn-l) = L Qn_"(O; ZI, ,""", Zn-l) e"z". (2.7)
,,~o
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Equation (2.6) says that the linear functionals
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(2.8)

are biorthogonal to the polynomials Qn(z; Zo ,... , Zn-l)' The polynomials
Qn reduce to the Goncarov polynomials if dl, = k and to the remainder
polynomials if dle = 1 for k = 1,2,....

Now we shall suppose that (dle+1fdSt~l is a nonincreasing sequence with
limit 1.

An easy consequence of a theorem due to Frank and Shaw ([7], pg. 10)
is

THEOREM A. If(zk)ko is a sequence ofcomplex numbers such that I Zk i ~
(W(f0)fdkH)P, then the corresponding polynomials Qn(z; zo, Zl "", Zn-l)
constitute a basis in any space~ (p < R:( CfJ).

(For the special cases dk = k and die = I see Dragilev [4] respectively
Pommiez [16], Dragilev and Cuhlova [5] and Buckholtz and Frank [3]).
That the constant W(f0) is best possible in Theorem A is an easy conse­
quence of a theorem due to Buckholtz and Frank [3]:

THEOREM B. For each c > W(f0) there exists a sequence (4)k=0 with
14 I = (cfdlc+1)p, such that the corresponding polynomials Qn(z; zj ,... , Z~_l)

do not constitute a basis in a space ~(p < R ~ CfJ).

(For the special case dk - k see Dragilev [4]).

3. BIORTHOGONAL SEQUENCES AND BASES IN TI1E SPACE %R

~ is a nuclear Frechet space (see Pietsch [15]), the topology of which can
be defined by the system of norms

Ilfllr = max If(z)l,
Izl~r

o < r < R, .f E '%R .

It suffices to take a sequence of norms II '11rn for a sequence rn,?f R. In order
to introduce a topology on the dual space %~ of %R , one defines a system of
unbounded norms by

II L II~ = sup{1 L(f)[:fE %R, Ilflir ~ I}

for L E%~.

The topology of the strong dual on %~ coincides with the inductive limit
topology determined in %; by the system of unbounded norms II . II~ (0 < r <
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R). A linear functional L on ~ is continuous if and only if there exists a
number r < R such that

II L II; < 00 (see Rolewicz [17]).

The space ~ can be consider as a Kothe sequence space (see Kothe [13])

The isomorphism T between AR and~ is given by

w

T((gk)~~O) = I gkzk E §"R'
k=O

(see Rolewicz [17]).
The dual space of AR is again given by a sequence space

A R = 17] = (7]k);;'=O: 3r < R with 117] II; := s~p I;: I < oo~

The duality is defined by

w

7](g) = I gk7]I"
k=O

for gEAR and 7] EAR.

Now let(fn, Ln)'::=o(fn E~, LnE§"~ orfn = (fnk)~oEAR' Ln=(Lnk)k=oEA~)
be a complete biorthogonal sequence for~ , i.e. the finite linear combinations
of the elements fn are dense in~ and LnCfm) = onm .

THEOREM C. A complete biorthogonal sequence (fn, Ln)'::=o for ~
constitutes a basis in ~, i.e. each f E ~ has a unique expansion f =
2:;=0 LnCn fn , ifand only if one of the following three equivalent conditions is
satisfied: for each r (0 < r < R) there exists a number r' (0 < r' < R) such
that

sup II Ln II~' Ilfn Ilr < 00;
n

for eachfE~ andfor each r (0 < r < R)

sup I LnCf)lllfn Ilr < 00;
n

for each r (0 < r < R) there exists a number r' (0 < r' < R) such that

(3.1)

(3.2)

(3.3)
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For the proof see [10], for further details and applications see [10, 11, 12].
Now we can characterize those sequences (Zk)k=O for which the corre­

sponding polynomials Qn(z; Zo , Z1 ,... , in-I) constitute a basis in the space

:FR'

PROPOSITION 1. Let (Zk)k~O be a sequence of complex numbers and (dk)'k=l
a nondecreasing sequence of positive numbers. Let do = eo = 1 and ek =

(d1d2 ••• d,,)-1 fork ?:- 1. The corresponding polynomials Qn(z; Zo, Zl ,... , Zn-1)
constitute a basis in :FR (0 < R < 00), if and only if for each l' (0 < r < R)
there exists a number r' (0 < 1" < R) such that

Proof In view of (3.3) we define

for k < nand

fnk = 0 for k > n;

L
em__n m-n

mn = -e-zn
m

for m?:- nand

Then

for m < n.

L fnkLnk = 1,
k=O

00

L fnkLZk = 0
k=O

for I > n, and for I < 11

~ n n

L fnl,L zk = L fnkLzk = L Qn-k(O; Zk ,... , Zn~l) ekei:1ek_Zz (,-1
/c=o k=Z /c=l

n-l
= L Qn-l.-;(O; Zl+; ,"', Zn-1) e;z/ = Qn-Z(ZI ; Zl ,... , Z",_l) = 0

;=0

by (2.7) and (2.4).
This means: ((fn/c)~o, (Lnm);;;=o)~=o is a biorthogonal sequence in A R ,

which is complete since the canonical basis-elements (Onl,)k=o in AR are
representable as finite linear combinations of the sequences (fnk)'k=o'
Applying Theorem C, condition (3.3), our proof is finished.

PROPOSITION 2. Let (Zk)k=O , (d/C)k=o and (e/C)k=O be as in proposition 1 and
suppose that the corresponding polynomials Qn(z; Zo , .. " Z",-l) constitute a
basis in a space ~ (0 < R < Cf)). Then they are a basis in any space ~,
(R' > R).
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With the help of proposition 1 the proof is just the same as the proof of
proposition 1 in [12]. Now we suppose that the polynomials Qn(z; Zo ,..., Zn-l)
constitute a basis in a space~ (R < 00) for a given sequence (Zk)~O and an
operator f» and define a constant by

Then the following result is an immediate consequence of proposition 1 and 2:

PROPOSITION 3. Any function f holomorphic in a disc IZ I < R, where
R > W§!((Zk)k~O)' is uniquely representable in a series

00

fez) = I f»nf(Zn) QnCz; Zo ,... , Zn-l)
n~O

and f»nj(zn) = 0 for n = 0, 1, 2, ..., implies f - O. If W§!((Zk)~O) > 0, then
there exists a function f holomorphic in a disc IZ I < R*, where 0 < R* <
W§!((Zk)k=O), which is not representable in a series ojthe polynomials Qn(z; Zo ,... ,

Zn-l)'

These results can be improved, if one assumes some restrictive conditions
on the sequences (Zk)k=O and (dk)~o .

PROPOSITION 4. Let (dk)k~l be a sequence of positive numbers such that

(3.6)

for each n, k = 1, 2, ... , do = 1 and (Zk)k~O be a sequence of complex numbers
with IZk I = dj;J;lfor k = 0, 1,2,....

Then the corresponding polynomials Qn(z; Zo ,... , Zn-l) constitute a basis in
~ (0 < R ~ 00) if and only iffor each r (0 < r < R) there exists a number
r' (0 < r' < R) such that

(3.7)

And

Proof In view of (3.4) we have to compute

(3.9)
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Here we can assume that r' ?" dl l, because for n = 0 one sees that (3.9) is
infinite for r' < d1\ and by (3.4) the polynomials Qn(z; Zo ,... , Zn-l) could
not constitute a basis in a space ~ for R :s:; d1

1
•

With the assumption that r' ?" d1
1 we can verify that

(3.10)

Let k ?" 0; by our assumption on the sequence (dJJ£=o we have

which implies

thus we obtain

and if we divide both sides by r',,+k, we get

Set m = n + k and observe that, for m = n, em- nd:;;+;'jemr'm equals e;;;lr '-'n,
which proves (3.10). For eachfE~ withf(z) =:L;==o akzk the two systems
of norms

,0 < r < R) and

are equivalent, i.e. for each r < R there exists a number r' < R and a
constant K1 such that

w

~ K1 I I ak I r'le
k==O

for each f E :7R

and for each r < R there exists a number r' < R and a constant K2 such that

I ! a'e I rk ~ K2 11fllr'
k==O

for each f E F R



306 FRITZ HASLINGER

(the last inequality follows by Cauchy's integral formulas for the derivatives
of a holomorphic function). Now (3.7) is equivalent to (3.4) and (3.8) is just
the same as (3.5). Q.E.D.

Condition (3.6) is satisfied for dIe = k (k = 1, 2,...) or dIe -1. With another
assumption on the sequence (d,,)'t:=l one obtains a new characterization of the
Whittaker constants W(!Zi):

PROPOSITION 5. Let (d,,)'t:=l denote a nondecreasing sequence of positive
numbers such that the sequence (d"+1 , dkl)'t:=l is nonincreasing and has limit 1.
Then

(3.1 1)

where the supremum is taken over all sequences (z,,)'t:=o with I z" I = dk~l'

This follows by the definition of the constant W.@«z,,)~o)and by theorem A
and B setting p = 1jW(.@).

4. INTERPOLATION

As an application of the propositions in part 3 we obtain the following
result

PROPOSITION 6. Let (d,,)'t:=l be a sequence of positive numbers satisfying
(3.6) and (z,,)'t:=o be a sequence of complex numbers with I z" I = dk~l' Then
for each sequence (a,,)'t:=o of complex numbers such that

lim sup I an I
l/n < [W.@«z,,)~~o)rl

n-'>ro

there exists an uniquely determined sequence (cm):=o of complex numbers with

such that

for n = 0, 1,2,.... (4.1)

In other words: for each function f(z) = L:=o anzn holomorphic in the disc
Iz I~ W.@«z,,)k'=o) there exists a uniquely determinedfunction g(z) = L:=o cmzni

holomorphic in the disc I z I ~ W.@«z")~o) such that

for n = 0, 1,2,.... (4.2)
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Proof In view of Theorem A the constant W£&«Zk)%'~O) exists and satisfies
W.§«Zk)k"~O) < 00.

Choose a number R >0 such that lim sup I an ~ IjR < [W.§«Zk)k=O)]-\
then by Proposition 3 and Proposition 4 for each r < R there exists a number
r' < R and a constant K such that

Now an E > 0 such that

for this E > 0 there exists a number N. > 0 with

(
I )nlanl ~ R+ E

It follows that

for each n?: N•.

for each n ?: N•.
This implies

sup I an I e-;:;l Ii Qn Ilr < 00
O:(n<ro

(4.3)

for each r < R. (Compare (3.2)).
The polynomials Qn(z; Zo ,... , Zn-l) constitute a basis in ~; now by the

theorem of Dynin-Mitiagin on the absoluteness of a basis in a nuclear
Frechet space (see Mitiagin [14] or Pietsch [15]) we have that for each r < R
there exists a number r ' < R such that

(see Rolewicz [17] pg. 189).
Collecting the last results we obtain

co

~ sup i an I e;;l II Qn 2: -,-,'-~c'::_ < 00
o<n<co n=O
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Since.fi'R is a complete space and the polynomials Qn(z; Zo , ... , Zn-l) constitute
a basis in .fi'R , there exists a function g E .fi'R with

and Proposition 6 is proved.
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