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1. INTRODUCTION

In this paper we use functional analysis methods, namely the theory of
bases in nuclear Fréchet spaces, in order to obtain results on polynomial
expansions of holomorphic functions. Let (0 << R < o) denote - the
vector space of holomorphic functions on the open disc Dy = {z: |z | < R}
with the topology of uniform convergence on compact subsets of D, . We
will consider the space %, as a Kdothe sequence space /A by mapping a
function f(z) = ZZ;O az* onto the sequence (ap)i,. Let (Por, be a
sequence of polynomials of degree n =0, 1, 2,...; we will give a necessary
and sufficient condition for certain sequences (£,)r_, to be a basis in one
fixed space F; (0 < R < o) (see proposition 1). In [4] and [5] Dragilev
gives necessary and sufficient conditions for (£,)5_, to be a basis in all
spaces #, (r > R), where R is a fixed positive number.

There are two tmportant special cases: the Gonfarov polynomials and the
remainder polynomials. Let (z;)f_, be an arbitrary sequence of complex
numbers, the Gonlarov pelynomials G.(z; z,,..., Z4_y) are defined by
Go(z) = 1 and

n—1 n—k

z" Z -
G'rz(Z; Zg seees Zn~1) = ﬁ - IZO —(l’li—k)' Gk(za Zg peees Zk—l): n=1,2,...

These polynomials are biorthogonal to the linear functionals L.{(f) =
J®(z), n=0,1,2,.., where fe %% , 1.e. L,(G,) = 8,,, . The question, when
the Gon&arov polynomials constitute a basis in %z, i.e. each fe % is
uniquely representable by the series f(z) = Yo/ ™(20) G2z} Zo yores Znos)
(convergence in the topology of %), was considered by many authors
{(Goncarov [9], Evgrafov [6], Dragilev [4, 12]}.
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The remainder polynomials are defined by By(z) = 1 and B,(z; zg,e-, Zn_1) =
2" — e 2 Bz Zg ey Zuy), M =1, 2,... For a function f(z) =
S co @zz" in Fy , let & denote the operator which transforms finto Sf(z) =
Y @zt L, and let &% be defined as the kth successive iterate of %. The
remainder polynolials are biorthogonal to the linear functionals

L(f) = ‘Spnf-(zn) for feF

and we have the problem of the unique expansion

0

Cf@) = ), F(2a) Bz Zo seees Zna)

n=0

(see Pommiez [16], Dragilev and Cuhlova [5], Buckholtz and Frank [3)).

Let (d,)r— be a nondecreasing sequence of positive numbers and define
the so called Gel’fond-Leont’ev [8] derivative of a function f(z) = .o 42"
in # by

Df(z) = i dyapz*1.

k=1

This is a generalization of the orinary derivative, where d;, = k (k = 1, 2,...),
and of &, where dj, = 1.

Denote by Q,(z; zg ,-.., Z41) the corresponding polynomials (see Section 2.)
biorthogonal to the linear functionals

Zuf) = D1 (z0).

In proposition 1 we characterize those sequences (z;)r, and (dy)5, , for
which the corresponding polynomials Q,(z; z, ,..., z,_;) constitute a basis in
&, . With the help of proposition 1 it is possible to show that a basis of
polynomials Q,(z; zg ,..., z,_,) il %% is also a basis in any space Z' (R' > R).
For a given basis of polynomials Q,(z; zy ,..., Zp_y) in Fpe (0 < R* < 0) it
is now possible to ask for the greatest lower bound of the radii R of conver-
gence, for which the given polynomials Q,(z; z, ,..., Z,—;) constitute a basis in
Fr . We denote this infimum by Wa((z,)i,) and derive a new determination
of the Whittaker constants W(2) with help of two theorems due to Frank
and Buckholtz [3] and Frank and Shaw [7]:

W%@; = sup{Wao((z1)r-0)}

where the supremum is taken over all sequences (z;)p.o With |z | = dily
(see proposition 5).
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The Whittaker constant 1 of the ordinary derivative is defined to be the
greatest positive number ¢ with the following property: If, for an entire
function f, 7(f) = lim,_, sup | f™(0)[*/* < ¢ and each of £, /', f",..., has a
zero in closed disc | z | = 1, then f= 0.

Let

H, = max l Gn(o; Zg yeevy Znﬂ.){a

where the maximum is taken over all sequences {z,)7-s whose terms lie on

|z]=1.
Then

— (hm Hl/n) 1 ( sup Hl/’ﬂ)——l

n->0 I<Kn<w

(see Evgrafov [6], Buckholiz [2]).
For the operator & define

hy, = max | By(0; zg 5., Zpg)l,

where the maximum is taken over all sequences (z;)i—; whose terms liec on
lz]=1.
Define
W(Sp) i ( sup hl/n)—l _ (llm hl/n)»l

1<n<o boindee]

(see Buckholtz [1]). ,
With some restrictive conditions on the sequence {dy)r.; , set in general

"%n = max ] Qn(oa 2 5eens Zn~1)i:

where the maximum is taken over all sequences (z,);—; whose terms lie on
z | == 1, and define

W(@) — ( Sup jfl/" -1 _ (hm !%pl/n)—l
{see Buckholtz and Frank [3]).

W(2) is called the Whittaker constant belonging to the operator &. If
we suppose some other restrictive conditions on the sequence (dy)p; (see
Section 3. formula (3.6)), then we can shatrpen proposition 1 to the following
result (proposition 4): The polynomials Q,(z; zy ,..., Z,_1) COnNstitute a basis
in % if and only if for each r < R there exists a number » << R such that

didy -+ d,M(r; Q,) = O@F™),

where M(#; Q,) is the maximum modulus.
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Finally we give the solution of an interpolation problem with the help of
Proposition 4: for each function fholomorphic in the disc | z | << Wal(zi)50)
there exists a uniquely determined function: g holomorphic in the disc
2| < Wol(zw)ie,) such that

enD"8(z,) = (S "(0))/n!

for n =0, 1, 2,... (see Proposition 6).

2. GENERALIZED GONCAROV POLYNOMIALS AND WHITTAKER CONSTANTS

Let fe F and f(z) = T, @3z*. We define the so called Gel’fond-Leont’ev
derivative & by

@f(z) = Z dkakzk_l,

k=1

where (d,)r., is a nondecreasing sequence of positive numbers Let e, = d, =
1 and e, = (didy - dp)™ for k = 1; then the successive iterates 2™ of @
can be written as

w©

Ife) = 3 @.1)

k=m

(see Gel’fond and Leont’ev [8]).
~ Now let (z)i, be a sequence of complex numbers and define polynomials

Qn(za Zg s Z1 seees Zn—l) by
Qi(z) =1 and

n—1

Qn(Z; Zg 5 Z1 5eees Zn—l) == enzn - Z en—kzz_ka(Z; Zé > 21 genns Zk—l) (22)
k=0 S .

forn =1, 2,... . It follows (see Buckholtz and Frank [3])

0.(Az; Az, AZy ooy AZy_y) == APO(Z; Zg yeues Zni), 2.3)
where A e C,
020520 yoees Zn) = 0 n>=1 » 2.4
DmQAZ; Zg serer Zp1) = OuoZ} Zig youns Znt)y O =m =n (2.5)
DO uZm 3 Zo s Zns) = S @.6)

Q'/L(Z; Zpy geeny Zn—l) = Z Qn—k((); Z 5eres an—l) ekz,k- {27)
%=0 :
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Equation (2.6) says that the linear functionals

ZAf) = Z7f (z0) (2.8)

arc biorthogonal to the polynomials Q,(z; zy,..., Z,_y). The polynomials
Q. reduce to the Gonlarov polynomials if d, = & and to the remainder
polynomials if dy =1 for k =1, 2,.....

Now we shall suppose that (d,.,/dp)5., is & nonincreasing sequence with
Limit 1.

An easy consequence of a theorem due to Frank and Shaw ([7], pg. 10)
is

THEOREM A. If (zp)5. is a sequence of complex numbers such that | z;, | <
(W(D)|d,.1)p, then the corresponding polynomials O.(z; zy, 2y yeoey Zyp1)
constitute a basis in any space Fy (p < R <K o).

(For the special cases d, =k and d, = 1 see Dragilev [4] respectively
Pommiez [16], Dragilev and Cuhlova [5] and Buckholtz and Frank [3]).
That the constant W{(2) is best possible in Theorem A is an easy conse-
quence of a theorem due to Buckholtz and Frank [3]:

TaeorREM B. For each ¢ > W(D) there exists a sequence (zf)g., with
I zF | = (c/dy.1)p, such that the corresponding polynomials Q.(z; zF ,..., 25 3}
do not constitute a basis in a space Fp(p << R < o).

(For the special case d;, = k see Dragilev [4]).

3. BIORTHOGONAL SEQUENCES AND BASES IN THE SPACE Fp

Fy 1s a nuclear Fréchet space (see Pietsch [15]), the topology of which can
be defined by the system of norms

Il =max |f(z)l, 0<r<R feF.

It suffices to take a sequence of norms || “llr,, for a sequence r, 7 R. In order
to introduce a topology on the dual space % of %3, one defines a system of
unbounded norms by

I LI = sup{l LA fe Fr, I /1, < 1}

for Le # ;.
The topology of the strong dual on & coincides with the inductive limit
topology determined in % by the system of unbounded norms || - |, (0 < r <
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R). A linear functional L on % is continuous if and only if there exists a
number r << R such that

IL|l; < o0 (see Rolewicz [17]).

The space #; can be consider as a Kothe sequence space (see Kothe [13])

= E)Ta I £l = 3 | €| #* < oo forcach r < R

k=0

The isomorphism 7" between Az and % is given by

T((fzc)z;o) = i‘ &zt e Fp.

(see Rolewicz [17]).
The dual space of Ay is again given by a sequence space

Ay = fn = @2 3r < Rwith ] = sup 1221 < oo

The duality is defined by
) = Y & for éedr and nedi.
k=0

NOW let (fn ’ n)n_o(fn € ej‘R ’ L € ‘g:lli Orfn (fnk)lcv()EAR H - (Lnk);clo EA;?)
be a complete biorthogonal sequence for %, , i.e. the finite hnear combinations
of the elements f,, are dense in % and L,(f,) = 6, -

TaHEOREM C. A complete biorthogonal sequence (f,, Ly)ao for
constitutes a basis in F, i.e. each f€ Fi has a unique expansion [ =
> o Lo(f) Sy » if and only if one of the following three equivalent conditions is
satisfied: for each r (0 < r < R) there exists a number r' (0 < ' < R) such
that

sup || Ly [lz [ fa llr < 003 (3.1
Jor each f e Fx and for eachr (0 <r < R)
sup | Ln(O 1 fn ll» < o0; (3.2)

Jfor each r (0 << r << R) there exists a number v’ (0 < v << R) such that

sup [(sup L221) § 11 7¥] < o (33)
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For the proof see [10], for further details and applications see {10, 11, 12].

Now we can characterize those sequences (z;)i., for which the corre-
sponding polynomials Q,(z; zy , 21 »..., Zn—3) COnstitute a basis in the space
Fr .

PROPOSITION 1. Let (zp)5.0 be a sequence of complex numbers and (d, )y,
a nondecreasing sequence of positive numbers. Let dy = ey =1 and e; =
(did, -~ dy)t for 'k = 1. The corresponding polynomials Q. (2; 2o 5 Z1 yeery Zp—1)
constitute a basis in F (0 < R <X ), if and only if for each r (0 <r < R}
there exists a number ¥’ (0 < r' << R) such that

n 2
sup [(sup 225212, 1) 310005 2o 2l | <0 (9

n m=2n Em =0

Proof. In view of (3.3) we define

Jue = OQnil05 23 5oy 2n ) € for k <nm and
S =90 for k > n;

v e
Lum = Z L for m >n and

m

Lymw =20 for m <n.

Then

Y farlny = 1, Y furky =0  for [>n, andfor [/ <n
k=0 -

B

z ko = Z JunLlue = Z Q05 Zi 5oy Znq) ekek_lezc—zzzkw

=0 Jo==

n-1l
= Z On1-40; zi4j s Zuop) €20 = Qu 215 21 ees Zuy) = 0
j=0

by (2.7) and (2.4).

This means: ((frrn)ico > (Lum)oeo)ee 18 a biorthogonal sequence in Ay,
which is complete since the canonical basis-elements (8,;)5., in Ay are
representable as finite linear combinations of the sequences {f)i.o-
Applying Theorem C, condition (3.3), our proof is finished.

ProroSITION 2. Letf (z)5y » (din.e and (e, )5, be as in propasition 1 and
suppose that the corresponding polynomials Q.(z; zy ,..., Z,_y) constitute a
basis in a space Fr (0 << R < ). Then they are a basis in any space Fyr
(R = R).
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With the help of proposition 1 the proof is just the same as the proof of
proposition 1 in [12]. Now we suppose that the polynomials Q,(z; zg ..., Z,1)
constitute a basis in a space %3 (R << o) for a given sequence (z;)5_, and an
operator & and define a constant by

Wol(z1)ne) = If{R > 0: (3 4) is valid for Fz}. (3.5
Then the following result is an immediate consequence of proposition 1 and 2:

PrROPOSITION 3. Any function f holomorphic in a disc | z| < R, where
R > Wol(zp)ise), is uniquely representable in a series

D =Y DY) Oulz: 2y o Zaos)

n=0

and D7f(z,) =0 for n =0, 1, 2,..., implies = 0. If Wo((zr)io) > 0, then
there exists a function f holomorphic in a disc | z | < R*, where 0 << R* <
Waol(zi)is), which is not representable in a series of the polynomials Q,(z; zy ...,

Zn—l)*

These results can be improved, if one assumes some restrictive conditions
on the sequences (z,)i, and (d,)5, -

ProrosiTION 4. Let (dp)iy be a sequence of positive numbers such that
vy < dpiady (3.6)

Jor each n, k = 1, 2,..., dy = 1 and (z3)i—y be a sequence of complex numbers
with | z,, | = diy for k=0, 1, 2,.....

Then the corresponding polynomials Q.(2; Zg 5., Zn_q) CORStitute a basis in
F (0 < R < o0) if and only if for each ¥ (0 <r < R) there exists a number
r' (0 <7t << R) such that

e;1 H Qn Hr = O(rm)- (37)

And
Waol(zp)ieo) = inf{R > 0: Vr << R 3r' < Rwith &, || Q.. 1, = O™} (3.8)

- Proof. In view of (3.4) we have to compute

e e N0
m—n — m—n“*n-+1

sup —=5 0 | z, [ = sup 5 (3.9
m2zn €n ” mzn  Eml’ m
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Here we can assume that 7" > d%, because for n = 0 one sees that (3.9) is
infinite for ¥ < d;%, and by (3.4) the polynomials Q.(z; z, ,..., 2,1} could
not constitute a basis in a space %5 for R < d; .

With the assumption that ¥ > d;* we can verify that

e n—m

m—nn+l 17 e

sup /= = g "1’". 3.10)
sup = B (3.10)

Let £ = O; by our assumption on the sequence (d,)5., we have
dn+1dn+z dn-x—k 77473 < d1d-z dzcdfk>
which implies
Gpirpys Ay ;7131 < ddy dr'";
thus we obtain
dhdy - dp i {dydy o dlc)~1 ;fl < dydy o dnriks
and if we divide both sides by r'**%, we get

—k
Crlniy e—l —n
— 27 .
en+kr’n+k n

Set m = n + k and observe that, for m = n, e,,_, dyn1y"/et'™ equals ;7' ",
which proves (3.10). For each fe % with f(z) = Yr., a,2" the two systems
of norms

(fl,,0 <r<R and (z G150 <1 < R)

%=0

are equivalent, i.e. for each r << R there exists a number ¥’ << R and a
constant K, such that

1fl, < Ky Y la|r'®  foreach fe %R
k=0

and for each r < R there exists a number #’ << R and a constant K, such that

18

lap | r* < K\ f

% foreach fe %

k=0

i
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(the last inequality follows by Cauchy’s integral formulas for the derivatives
of a holomorphic function). Now (3.7) is equivalent to (3.4) and (3.8) is just
the same as (3.5). Q.E.D.

Condition (3.6) is satisfied for d;, =k (k= 1, 2,...) or dj,=1. With another
assumption on the sequence (d)s_, one obtains a new characterization of the
Whittaker constants W(2):

PROPOSITION 5. Let (dy)s., denote a nondecreasing sequence of positive
numbers such that the sequence (dy,, , di V), is nonincreasing and has limit 1.
Then

1 ®
WD) = sup{ W ao((Z)1=0)}> (3.11)
where the supremum is taken over all sequences (zi)o With | z, | = diiy-

This follows by the definition of the constant Wg((z,)5.0) and by theorem A
and B setting p = 1/ (D).

4. INTERPOLATION

As an application of the propositions in part 3 we obtain the following
result

ProrosITION 6. Let (d)y., be a sequence of positive numbers satisfying
(3.6) and (z,)% be a sequence of complex numbers with | z, | = diy . Then
Jor each sequence (a,)s_, of complex numbers such that

lin}%iup la, M < [Wol(zn) o)™

there exists an uniquely determined sequence (c,,)m_y Of complex numbers with
lim sup | e, [ < [Wa((z)eo]™

such that

Z * CpZy " =a, for n=0,12,... 4.1)

In other words for each function f(z) = Y_o auz" holomorphic in the dzsc
| 2| < Wol(z)Loo) there exists a uniquely determined function g(z) = ¥ _o CuZ™
holomorphic in the disc | z | < Wa((z2)ip) such that

0, D"g(z,) = (f™O)n!  for n=0,1,2,.... (4.2)
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Proof. In view of Theorem A the constant Wg((z,)5,) exists and satisfies
Wal(Zu)iie) < .

Choose a number R >0 such thatlimsup | a, |V <R <[Wal(zp)e o)l
then by Proposition 3 and Proposition 4 for each r <C R there exists a number
# < R and a constant X such that

et Qnlly < Kr'm.

Now an ¢ > 0 such that
(1 ‘
SR Rt
for this € > O there exists a number N, > 0 with
I\
|an|<(-f+e) foreach »n > N,.

It foliows that
, 1 n ,
lanl GOl <K (5 +¢) 1<K

foreachn > N,.
This implies

sup | a, | e;' 1@l < o0 4.3
C<n<Ce

for each r < R. (Compare (3.2)).

The polynomials 0,(z; zy ,..., Zp—q) COnstitute a basis in F#z; now by the
theorem of Dynin—-Mitiagin on the absoluteness of a basis in a nuclear
Fréchet space (see Mitiagin [14] or Pietsch [15]) we have that for each r < R
there exists a number ¥ < R such that

§ 1l @)

(see Rolewicz [17] pg. 189).
Collecting the last results we obtain

3 Dol — S -y 1Qal,
Z g gy, ] €n !i Q’IL flp ™ Z [ ay } €n l\l Qn “T’ T T
7=t n=0 \ Qn !Pf’
1 I =l Qrz r
< sup lagle | Qullr 2 i < ©

y 1
o<n<o ZZO M Qn e
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Since & is a complete space and the polynomials Q,(z; z; ,..., Z,_;) constitute
a basis in %y , there exists a function g € %5 with

@ng(zn) = ane;z-l

and Proposition 6 is proved.

10.

11.

12.

13,
14.

15.
16.

17.
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