Generalized Abel-Gončarov Bases
 in Spaces of Holomorphic Functions

Fritz Haslinger
Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria Communicated by Oved Shisha

Received January 22, 1978

1. Introduction

In this paper we use functional analysis methods, namely the theory of bases in nuclear Fréchet spaces, in order to obtain results on polynomial expansions of holomorphic functions. Let $\mathscr{F}_{R}(0<R \leqslant \infty)$ denote the vector space of holomorphic functions on the open disc $D_{R}=\{z:|z|<R\}$ with the topology of uniform convergence on compact subsets of D_{R}. We will consider the space \mathscr{F}_{R} as a Köthe sequence space Λ_{R} by mapping a function $f(z)=\sum_{l k=0}^{\infty} a_{k} z^{k}$ onto the sequence $\left(a_{k}\right)_{b=0}^{\infty}$. Let $\left(P_{n}\right)_{k=0}^{\infty}$ be a sequence of polynomials of degree $n=0,1,2, \ldots$; we will give a necessary and sufficient condition for certain sequences $\left(P_{n}\right)^{\infty}=0$ to be a basis in one fixed space $\mathscr{F}_{R}(0<R \leqslant \infty)$ (see proposition 1). In [4] and [5] Dragilev gives necessary and sufficient conditions for $\left(P_{n}\right)_{n=0}^{\infty}$ to be a basis in all spaces $\mathscr{F}_{r}(r>R)$, where R is a fixed positive number.
There are two important special cases: the Goncrarov polynomials and the remainder polynomials. Let $\left(z_{k}\right)_{k=9}^{\infty}$ be an arbitrary sequence of complex numbers, the Gončarov polynomials $G_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ are defined by $G_{0}(z) \equiv 1$ and
$G_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)=\frac{z^{n}}{n!}-\sum_{k=0}^{n-1} \frac{z_{k}^{n-k}}{(n-k)!} G_{k}\left(z ; z_{0}, \ldots, z_{k-1}\right), \quad n=1,2, \ldots$.
These polynomials are biorthogonal to the linear functionals $L_{n}(f)=$ $f^{(n)}\left(z_{n}\right), n=0,1,2, \ldots$, where $f \in \mathscr{F}_{R}$, i.e. $L_{n}\left(G_{m}\right)=\delta_{m n}$. The question, when the Gončarov polynomials constitute a basis in \mathscr{F}_{R}, i.e. each $f \in \mathscr{F}_{R}$ is uniquely representable by the series $f(z)=\sum_{n=0}^{\infty} f^{(n)}\left(z_{n}\right) G_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ (convergence in the topology of \mathscr{F}_{R}), was considered by many authors (Gončarov [9], Evgrafov [6], Dragilev [4, 12]).

The remainder polynomials are defined by $B_{0}(z) \equiv 1$ and $B_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)=$ $z^{n}-\sum_{k=0}^{n-1} z_{k}^{n-k} B_{k}\left(z ; z_{0}, \ldots, z_{k-1}\right), \quad n=1,2, \ldots$. For a function $f(z)=$ $\sum_{k=0}^{\infty} a_{k} z^{k}$ in \mathscr{F}_{R}, let \mathscr{S} denote the operator which transforms f into $\mathscr{S} f(z)=$ $\sum_{k=1}^{\infty} a_{k} z^{k-1}$, and let \mathscr{S}^{k} be defined as the k th successive iterate of \mathscr{S}. The remainder polynolials are biorthogonal to the linear functionals

$$
l_{n}(f)=\mathscr{S} n f\left(z_{n}\right) \quad \text { for } \quad f \in \mathscr{F}_{R}
$$

and we have the problem of the unique expansion

$$
f(z)=\sum_{n=0}^{\infty} \mathscr{S}^{n} f\left(z_{n}\right) B_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)
$$

(see Pommiez [16], Dragilev and Čuhlova [5], Buckholtz and Frank [3]).
Let $\left(d_{k}\right)_{k=1}^{\infty}$ be a nondecreasing sequence of positive numbers and define the so called Gel'fond-Leont'ev [8] derivative of a function $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ in \mathscr{F}_{R} by

$$
\mathscr{D} f(z)=\sum_{k=1}^{\infty} d_{k} a_{k} z^{k-1} .
$$

This is a generalization of the orinary derivative, where $d_{k}=k(k=1,2, \ldots)$, and of \mathscr{S}, where $d_{k} \equiv 1$.

Denote by $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ the corresponding polynomials (see Section 2.) biorthogonal to the linear functionals

$$
\mathscr{L}_{n}(f)=\mathscr{D}^{n} f\left(z_{n}\right)
$$

In proposition 1 we characterize those sequences $\left(z_{k}\right)_{k=0}^{\infty}$ and $\left(d_{k}\right)_{k=1}^{\infty}$, for which the corresponding polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ constitute a basis in \mathscr{F}_{R}. With the help of proposition 1 it is possible to show that a basis of polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ in \mathscr{F}_{R} is also a basis in any space $\mathscr{F}_{R^{\prime}}\left(R^{\prime}>R\right)$. For a given basis of polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ in $\mathscr{F}_{R^{*}}\left(0<R^{*}<\infty\right)$ it is now possible to ask for the greatest lower bound of the radii R of convergence, for which the given polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ constitute a basis in \mathscr{F}_{R}. We denote this infimum by $W_{\mathscr{T}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)$ and derive a new determination of the Whittaker constants $W(\mathscr{D})$ with help of two theorems due to Frank and Buckholtz [3] and Frank and Shaw [7]:

$$
\frac{1}{W(\mathscr{D})}=\sup \left\{W_{\mathscr{D}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)\right\}
$$

where the supremum is taken over all sequences $\left(z_{k}\right)_{k=0}^{\infty}$ with $\left|z_{k}\right|=d_{k+1}^{-1}$ (see proposition 5).

The Whittaker constant W of the ordinary derivative is defined to be the greatest positive number c with the following property: If, for an entire function $f, \tau(f)=\lim _{n \rightarrow \infty} \sup \left|f^{(n)}(0)\right|^{1 / n}<c$ and each of $f, f^{\prime}, f^{\prime \prime}, \ldots$, has a zero in closed disc $|z|=1$, then $f \equiv 0$.

Let

$$
H_{n}=\max \left|G_{n}\left(0 ; z_{0}, \ldots, z_{n-1}\right)\right|
$$

where the maximum is taken over all sequences $\left(z_{k}\right)_{k=0}^{n-1}$ whose terms lie on $|z|=1$.

Then

$$
W=\left(\lim _{n \rightarrow \infty} H_{n}^{1 / n}\right)^{-1}=\left(\sup _{1 \leqslant n<\infty} H_{n}^{1 / n}\right)^{-1}
$$

(see Evgrafov [6], Buckholtz [2]).
For the operator \mathscr{S} define

$$
h_{n}=\max \left|B_{n}\left(0 ; z_{0}, \ldots, z_{n-1}\right)\right|,
$$

where the maximum is taken over all sequences $\left(z_{k}\right)_{k=0}^{n-1}$ whose terms lie on $|z|=1$.

Define

$$
W(\mathscr{S}):=\left(\sup _{1 \leqslant n<\infty} h_{n}^{1 / n}\right)^{-1}=\left(\lim _{n \rightarrow \infty} h_{n}^{1 / n}\right)^{-1}
$$

(see Buckholtz [1]).

With some restrictive conditions on the sequence $\left(d_{k}\right)_{k=1}^{\infty}$, set in general

$$
\mathscr{H}_{n}=\max \left|Q_{n}\left(0 ; z_{0}, \ldots, z_{n-1}\right)\right|
$$

where the maximum is taken over all sequences $\left(z_{k}\right)_{k=0}^{n-1}$ whose terms tie on $|z|=1$, and define

$$
W(\mathscr{D}):=\left(\sup _{1 \leqslant n<\infty} \mathscr{H}_{n}^{1 / n}\right)^{-1}=\left(\lim _{n \rightarrow \infty} \mathscr{H}_{n}^{1 / n}\right)^{-1}
$$

(see Buckholtz and Frank [3]).
$W(\mathscr{D})$ is called the Whittaker constant belonging to the operator \mathscr{O}. If we suppose some other restrictive conditions on the sequence $\left(d_{k}\right)_{l \mathrm{l}=1}^{\infty}$ (see Section 3. formula (3.6)), then we can sharpen proposition 1 to the following result (proposition 4): The polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ constitute a basis in \mathscr{F}_{R} if and only if for each $r<R$ there exists a number $r^{\prime}<R$ such that

$$
d_{1} d_{2} \cdots d_{n} M\left(r ; Q_{n}\right)=O\left(r^{m_{n}}\right)
$$

where $M\left(r ; Q_{n}\right)$ is the maximum modulus.

Finally we give the solution of an interpolation problem with the help of Proposition 4: for each function f holomorphic in the disc $|z| \leqslant W_{\mathscr{O}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)$ there exists a uniquely determined function g holomorphic in the disc $|z| \leqslant W_{\mathscr{R}}\left(\left(z_{k}\right)_{k_{m=0}}^{\infty}\right)$ such that

$$
e_{n} \mathscr{D}^{n} g\left(z_{n}\right)=\left(f^{(n)}(0)\right) / n!
$$

for $n=0,1,2, \ldots$ (see Proposition 6).

2. Generalized Gončarov Polynomials and Whittaker Constants

Let $f \in \mathscr{F}_{R}$ and $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$. We define the so called Gel'fond-Leont'ev derivative \mathscr{D} by

$$
\mathscr{D} f(z)=\sum_{k=1}^{\infty} d_{k} a_{k} z^{k-1}
$$

where $\left(d_{k}\right)_{k=1}^{\infty}$ is a nondecreasing sequence of positive numbers Let $e_{0}=d_{0}=$ 1 and $e_{k}=\left(d_{1} d_{2} \cdots d_{k}\right)^{-1}$ for $k \geqslant 1$; then the successive iterates \mathscr{D}^{m} of \mathscr{D} can be written as

$$
\begin{equation*}
\mathscr{D}^{m} f(z)=\sum_{k=m}^{\infty} \frac{e_{k-m}}{e_{k}} a_{k} z^{k-m} \tag{2.1}
\end{equation*}
$$

(see Gel'fond and Leont'ev [8]).
Now let $\left(z_{k}\right)_{k=0}^{\infty}$ be a sequence of complex numbers and define polynomials $Q_{n}\left(z ; z_{0}, z_{1}, \ldots, z_{n-1}\right)$ by

$$
\begin{gather*}
Q_{0}(z) \equiv 1 \quad \text { and } \\
Q_{n}\left(z ; z_{0}, z_{1}, \ldots, z_{n-1}\right)=e_{n} z^{n}-\sum_{k=0}^{n-1} e_{n-k} z_{k}^{n-k} Q_{k}\left(z ; z_{0}, z_{1}, \ldots, z_{k-1}\right) \tag{2.2}
\end{gather*}
$$

for $n=1,2, \ldots$. It follows (see Buckholtz and Frank [3])

$$
\begin{equation*}
Q_{n}\left(\lambda z ; \lambda z_{0}, \lambda z_{1}, \ldots, \lambda z_{n-1}\right)=\lambda^{n} Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right) \tag{2.3}
\end{equation*}
$$

where $\lambda \in C$,

$$
\begin{gather*}
Q_{n}\left(z_{0} ; z_{0}, \ldots, z_{n-1}\right)=0 \quad n \geqslant 1 \tag{2.4}\\
\mathscr{D}^{m} Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)=Q_{n-m}\left(z ; z_{m}, \ldots, z_{n-1}\right), \quad 0=m=n \tag{2.5}\\
\mathscr{D}^{m} Q_{n}\left(z_{m} ; z_{0}, \ldots, z_{n-1}\right)=\delta_{n m} \tag{2.6}\\
Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)=\sum_{k=0}^{n} Q_{n-k}\left(0 ; z_{k}, \ldots, z_{n-1}\right) e_{k} z^{i n} . \tag{2.7}
\end{gather*}
$$

Equation (2.6) says that the linear functionals

$$
\begin{equation*}
\mathscr{L}_{n}(f)=\mathscr{D}^{n} f\left(z_{n}\right) \tag{2.8}
\end{equation*}
$$

are biorthogonal to the polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$. The polynomials Q_{n} reduce to the Gončarov polynomials if $d_{k b}=k$ and to the remainder polynomials if $d_{k} \equiv 1$ for $k=1,2, \ldots$.

Now we shall suppose that $\left(d_{k+1} / d_{k}\right)_{k=1}^{\infty}$ is a nonincreasing sequence with limit 1.

An easy consequence of a theorem due to Frank and Shaw ([7], pg. 10) is

ThEOREM A. If $\left(z_{k}\right)_{k=0}^{\infty}$ is a sequence of complex numbers such that $\left|z_{k}\right| \leqslant$ $\left(W(\mathscr{D}) / d_{k+1}\right) \rho$, then the corresponding polynomials $Q_{n}\left(z ; z_{0}, z_{1}, \ldots, z_{n-1}\right)$ constitute a basis in any space $\mathscr{F}_{R}(\rho<R \leqslant \infty)$.
(For the special cases $d_{k}=k$ and $d_{k} \equiv 1$ see Dragilev [4] respectively Pommiez [16], Dragilev and Čuhlova [5] and Buckholtz and Frank [3]). That the constant $W(\mathscr{D})$ is best possible in Theorem A is an easy consequence of a theorem due to Buckholtz and Frank [3]:

Theorem B. For each $c>W(\mathscr{D})$ there exists a sequence $\left(z_{k}^{*}\right)_{k=0}^{\infty}$ with $\left|z_{k}^{*}\right|=\left(c / d_{k+1}\right) \rho$, such that the corresponding polynomials $Q_{n}\left(z ; z_{1}^{*}, \ldots, z_{n-1}^{*}\right)$ do not constitute a basis in a space $\mathscr{F}_{R}(\rho<R \leqslant \infty)$.
(For the special case $d_{k}=k$ see Dragilev [4]).

3. Biorthogonal Sequences and Bases in the Space \mathscr{F}_{R}

\mathscr{F}_{R} is a nuclear Fréchet space (see Pietsch [15]), the topology of which can be defined by the system of norms

$$
\|f\|_{r}=\max _{|z|=r}|f(z)|, \quad 0<r<R, \quad f \in \mathscr{\mathscr { F }}_{R}
$$

It suffices to take a sequence of norms $\|\cdot\|_{r_{n}}$ for a sequence $r_{n} \nearrow R$. In order to introduce a topology on the dual space \mathscr{F}_{R}^{\prime} of \mathscr{F}_{R}, one defines a system of unbounded norms by

$$
\|L\|_{r}^{\prime}=\sup \left\{|L(f)|: f \in \mathscr{F}_{R},\|f\|_{r} \leqslant 1\right\}
$$

for $L \in \mathscr{F}_{R}^{\prime}$.
The topology of the strong dual on \mathscr{F}_{R}^{\prime} coincides with the inductive limit topology determined in \mathscr{F}_{R}^{\prime} by the system of unbounded norms $\|\cdot\|_{r}^{\prime}(0<r<$
R). A linear functional L on \mathscr{F}_{R} is continuous if and only if there exists a number $r<R$ such that

$$
\|L\|_{r}^{\prime}<\infty \quad \text { (see Rolewicz [17]) }
$$

The space \mathscr{F}_{R} can be consider as a Köthe sequence space (see Köthe [13])

$$
\Lambda_{R}=\left\{\xi=\left(\xi_{k}\right)_{k=0}^{\infty}:\|\xi\|_{r}:=\sum_{k=0}^{\infty}\left|\xi_{k}\right| r^{k}<\infty \text { for each } r<R\right\}
$$

The isomorphism T between Λ_{R} and \mathscr{F}_{R} is given by

$$
T\left(\left(\xi_{k}\right)_{k=0}^{\infty}\right)=\sum_{k=0}^{\infty} \xi_{k} z^{k} \in \mathscr{F}_{R}
$$

(see Rolewicz [17]).
The dual space of Λ_{R} is again given by a sequence space

$$
\Lambda_{R}^{\prime}=\left\{\eta=\left(\eta_{k}\right)_{k=0}^{\infty}: \exists r<R \text { with }\|\eta\|_{r}^{\prime}:=\sup _{k} \frac{\left|\eta_{k}\right|}{r^{k}}<\infty\right\}
$$

The duality is defined by

$$
\eta(\xi)=\sum_{k=0}^{\infty} \xi_{k} \eta_{k}, \quad \text { for } \quad \xi \in \Lambda_{R} \quad \text { and } \quad \eta \in \Lambda_{R}^{\prime}
$$

Now let $\left(f_{n}, L_{n}\right)_{n=0}^{\infty}\left(f_{n} \in \mathscr{F}_{R}, L_{n} \in \mathscr{F}_{R}^{\prime}\right.$ or $\left.f_{n}=\left(f_{n k}\right)_{k=0}^{\infty} \in \Lambda_{R}, L_{n}=\left(L_{n k}\right)_{k=0}^{\infty} \in \Lambda_{R}^{\prime}\right)$ be a complete biorthogonal sequence for \mathscr{F}_{R}, i.e. the finite linear combinations of the elements f_{n} are dense in \mathscr{F}_{R} and $L_{n}\left(f_{m}\right)=\delta_{n m}$.

Theorem C. A complete biorthogonal sequence $\left(f_{n}, L_{n}\right)_{n=0}^{\infty}$ for \mathscr{F}_{R} constitutes a basis in \mathscr{F}_{R}, i.e. each $f \in \mathscr{F}_{R}$ has a unique expansion $f=$ $\sum_{n=0}^{\infty} L_{n}(f) f_{n}$, if and only if one of the following three equivalent conditions is satisfied: for each $r(0<r<R)$ there exists a number $r^{\prime}\left(0<r^{\prime}<R\right)$ such that

$$
\begin{equation*}
\sup _{n}\left\|L_{n}\right\|_{r^{\prime}}\left\|f_{n}\right\|_{r}<\infty \tag{3.1}
\end{equation*}
$$

for each $f \in \mathscr{F}_{R}$ and for each $r(0<r<R)$

$$
\begin{equation*}
\sup _{n}\left|L_{n}(f)\right|\left\|f_{n}\right\|_{r}<\infty \tag{3.2}
\end{equation*}
$$

for each $r(0<r<R)$ there exists a number $r^{\prime}\left(0<r^{\prime}<R\right)$ such that

$$
\begin{equation*}
\sup _{n}\left[\left(\sup _{k} \frac{\left|L_{n k e}\right|}{r^{\prime / k}}\right) \sum_{k=0}^{\infty}\left|f_{n k}\right| r^{k}\right]<\infty \tag{3.3}
\end{equation*}
$$

For the proof see [10], for further details and applications see [10, 11, 12]. Now we can characterize those sequences $\left(z_{k}\right)_{k=0}^{\infty}$ for which the corresponding polynomials $Q_{n}\left(z ; z_{0}, z_{1}, \ldots, \dot{z}_{n-1}\right)$ constitute a basis in the space \mathscr{F}_{R}.

Proposition 1. Let $\left(z_{k}\right)_{k=0}^{\infty}$ be a sequence of complex numbers and $\left(d_{k}\right)_{k=1}^{\infty}$ a nondecreasing sequence of positive numbers. Let $d_{0}=e_{0}=1$ and $e_{k}=$ $\left(d_{1} d_{2} \cdots d_{k}\right)^{-1}$ for $k \geqslant 1$. The corresponding polynomials $Q_{n}\left(z ; z_{0}, z_{1}, \ldots, z_{n-1}\right)$ constitute a basis in $\mathscr{F}_{R}(0<R \leqslant \infty)$, if and only if for each $r(0<r<R)$ there exists a number $r^{\prime}\left(0<r^{\prime}<R\right)$ such that

$$
\begin{equation*}
\sup _{n}\left[\left(\sup _{m \geqslant n} \frac{e_{m-n}}{e_{m} r^{\prime m}}\left|z_{n}\right|^{m-n}\right) \sum_{k=0}^{n}\left|Q_{n-k}\left(0 ; z_{k}, \ldots, z_{n-1}\right)\right| e_{k} k^{k}\right]<\infty \tag{3.4}
\end{equation*}
$$

Proof. In view of (3.3) we define

$$
\begin{aligned}
& f_{n k}=Q_{n-k}\left(0 ; z_{k}, \ldots, z_{n-1}\right) e_{k} \quad \text { for } \quad k \leqslant n \quad \text { and } \\
& f_{n k}=0 \quad \text { for } k>n ; \\
& L_{n m}=\frac{e_{m-n}}{e_{m}} z_{n}^{m-n} \quad \text { for } m \geqslant n \text { and } \\
& L_{n m}=0 \quad \text { for } m<n .
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{k=0}^{\infty} f_{n k} L_{n k} & =1, \quad \sum_{k=0}^{\infty} f_{n k} L_{l k}=0 \quad \text { for } \quad l>n, \text { and for } l<n \\
\sum_{k=0}^{\infty} f_{n k} L_{l k} & =\sum_{k=l}^{n} f_{n k} L_{l k}=\sum_{k=l}^{n} Q_{n-k}\left(0 ; z_{l k}, \ldots, z_{n-1}\right) e_{k k} e_{k}^{-1} e_{k-i} z_{l}^{z-l} \\
= & \sum_{j=0}^{n-l} Q_{n-l-j}\left(0 ; z_{l+j}, \ldots, z_{n-1}\right) e_{j} z_{l}^{j}=Q_{n-l}\left(z_{l} ; z_{l}, \ldots, z_{n-1}\right)=0
\end{aligned}
$$

by (2.7) and (2.4).
This means: $\left(\left(f_{n k}\right)_{k=0}^{\infty},\left(L_{m m}\right)_{m=0}^{\infty}\right)_{n=0}^{\infty}$ is a biorthogonal sequence in Λ_{F}, which is complete since the canonical basis-elements $\left(\delta_{n k}\right)_{k=0}^{\infty}$ in Λ_{R} are representable as finite linear combinations of the sequences $\left(f_{n k}\right)_{k=0}^{\infty}$. Applying Theorem C, condition (3.3), our proof is finished.

Proposition 2. Let $\left(z_{k}\right)_{k=0}^{\infty},\left(d_{k}\right)_{k=0}^{\infty}$ and $\left(e_{k}\right)_{k=0}^{\infty}$ be as in proposition 1 and suppose that the corresponding polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ constitute a basis in a space $\mathscr{F}_{R}(0<R<\infty)$. Then they are a basis in any space $\mathscr{F}_{R^{\prime}}$ ($R^{\prime}>R$).

With the help of proposition 1 the proof is just the same as the proof of proposition 1 in [12]. Now we suppose that the polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ constitute a basis in a space $\mathscr{F}_{R}(R<\infty)$ for a given sequence $\left(z_{k}\right)_{k=0}^{\infty}$ and an operator \mathscr{D} and define a constant by

$$
\begin{equation*}
W_{\mathscr{O}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)=\inf \left\{R>0:(34) \text { is valid for } \mathscr{F}_{R}\right\} \tag{3.5}
\end{equation*}
$$

Then the following result is an immediate consequence of proposition 1 and 2:
Proposition 3. Any function f holomorphic in a disc $|z|<R$, where $R>W_{\mathscr{D}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)$, is uniquely representable in a series

$$
f(z)=\sum_{n=0}^{\infty} \mathscr{X}^{n} f\left(z_{n}\right) Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)
$$

and $\mathscr{D}^{n} f\left(z_{n}\right)=0$ for $n=0,1,2, \ldots$, implies $f \equiv 0$. If $W_{\mathscr{O}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)>0$, then there exists a function f holomorphic in a disc $|z|<R^{*}$, where $0<R^{*}<$ $W_{\mathscr{O}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)$, which is not representable in a series of the polynomials $Q_{n}\left(z ; z_{0}, \ldots\right.$, $\left.z_{n-1}\right)$.

These results can be improved, if one assumes some restrictive conditions on the sequences $\left(z_{k}\right)_{k=0}^{\infty}$ and $\left(d_{k}\right)_{k=0}^{\infty}$.

Proposition 4. Let $\left(d_{k}\right)_{k=1}^{\infty}$ be a sequence of positive numbers such that

$$
\begin{equation*}
d_{1} d_{n+k} \leqslant d_{n+1} d_{k} \tag{3.6}
\end{equation*}
$$

for each $n, k=1,2, \ldots, d_{0}=1$ and $\left(z_{k}\right)_{k=0}^{\infty}$ be a sequence of complex numbers with $\left|z_{k}\right|=d_{k+1}^{-1}$ for $k=0,1,2, \ldots$.

Then the corresponding polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ constitute a basis in $\mathscr{F}_{R}(0<R \leqslant \infty)$ if and only if for each $r(0<r<R)$ there exists a number $r^{\prime}\left(0<r^{\prime}<R\right)$ such that

$$
\begin{equation*}
e_{n}^{-1}\left\|Q_{n}\right\|_{r}=O\left(r^{\prime n}\right) \tag{3.7}
\end{equation*}
$$

And

$$
\begin{equation*}
W_{\mathscr{D}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)=\inf \left\{R>0: \forall r<R \exists r^{\prime}<R \text { with } e_{n}^{-1}\left\|Q_{n}\right\|_{r}=O\left(r^{\prime} n\right)\right\} . \tag{3.8}
\end{equation*}
$$

Proof. In view of (3.4) we have to compute

$$
\begin{equation*}
\sup _{m \geqslant n} \frac{e_{m-n}}{e_{n} r^{\prime} m}\left|z_{n}\right|^{m-n}=\sup _{m \geqslant n} \frac{e_{m-n} d_{n+1}^{n-m}}{e_{m} r^{\prime m}} \tag{3.9}
\end{equation*}
$$

Here we can assume that $r^{\prime} \geqslant d_{1}^{-1}$, because for $n=0$ one sees that (3.9) is infinite for $r^{\prime}<d_{1}^{-1}$, and by (3.4) the polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ could not constitute a basis in a space \mathscr{F}_{R} for $R \leqslant d_{1}^{-1}$.

With the assumption that $r^{\prime} \geqslant d_{1}^{-1}$ we can verify that

$$
\begin{equation*}
\sup _{m \geqslant n} \frac{e_{m-n} d_{n+1}^{n-m}}{e_{m} r^{\prime} m}=e_{n}^{-1} r^{\prime \prime n} . \tag{3.10}
\end{equation*}
$$

Let $k \geqslant 0$; by our assumption on the sequence $\left(d_{k}\right)_{k_{k=0}}^{\infty}$ we have

$$
d_{n+1} d_{n+2} \cdots d_{n+k} d_{n+1}^{-k} \leqslant d_{1} d_{2} \cdots d_{k} d_{1}^{d_{1}},
$$

which implies

$$
d_{n+1} d_{n+2} \cdots d_{n+k} d_{n+1}^{-k} \leqslant d_{1} d_{2} \cdots d_{k} r^{\prime k}
$$

thus we obtain

$$
d_{1} d_{2} \cdots d_{n+k}\left(d_{1} d_{2} \cdots d_{k}\right)^{-1} d_{n+1}^{-k} \leqslant d_{1} d_{2} \cdots d_{n} r^{\prime k}
$$

and if we divide both sides by $r^{\prime n+k}$, we get

$$
\frac{e_{k} d_{n+1}^{-k}}{e_{n+k} r^{\prime n+k}} \leqslant e_{n}^{-1} r^{\prime n}
$$

Set $m=n+k$ and observe that, for $m=n, e_{m-n} d_{n_{+1}}^{n-m} / e_{m n} r^{\prime m}$ equals $e_{n}^{-1} r^{\prime-n}$, which proves (3.10). For each $f \in \mathscr{F}_{R}$ with $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ the two systems of norms

$$
\left(\|f\|_{r}, 0<r<R\right) \quad \text { and } \quad\left(\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}, 0<r<R\right)
$$

are equivalent, i.e. for each $r<R$ there exists a number $r^{\prime}<R$ and a constant K_{1} such that

$$
\|f\|_{r} \leqslant K_{1} \sum_{k=0}^{\infty}\left|a_{k}\right| r^{\prime k} \quad \text { for each } \quad f \in \mathscr{F}_{R}
$$

and for each $r<R$ there exists a number $r^{\prime}<R$ and a constant K_{2} such that

$$
\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k} \leqslant K_{2}\|f\|_{r^{\prime}} \quad \text { for each } \quad f \in \mathscr{F}_{R}
$$

(the last inequality follows by Cauchy's integral formulas for the derivatives of a holomorphic function). Now (3.7) is equivalent to (3.4) and (3.8) is just the same as (3.5).
Q.E.D.

Condition (3.6) is satisfied for $d_{k}=k(k=1,2, \ldots)$ or $d_{k} \equiv 1$. With another assumption on the sequence $\left(d_{k}\right)_{k=1}^{\infty}$ one obtains a new characterization of the Whittaker constants $W(\mathscr{D})$:

Proposition 5. Let $\left(d_{k}\right)_{k=1}^{\infty}$ denote a nondecreasing sequence of positive numbers such that the sequence $\left(d_{k+1}, d_{k}^{-1}\right)_{k=1}^{\infty}$ is nonincreasing and has limit 1. Then

$$
\begin{equation*}
\frac{1}{W(\mathscr{D})}=\sup \left\{W_{\mathscr{D}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)\right\}, \tag{3.11}
\end{equation*}
$$

where the supremum is taken over all sequences $\left(z_{k}\right)_{k=0}^{\infty}$ with $\left|z_{k}\right|=d_{k+1}^{-1}$.
This follows by the definition of the constant $W_{\mathscr{A}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)$ and by theorem A and B setting $\rho=1 / W(\mathscr{D})$.

4. Interpolation

As an application of the propositions in part 3 we obtain the following result

Proposition 6. Let $\left(d_{k}\right)_{k=1}^{\infty}$ be a sequence of positive numbers satisfying (3.6) and $\left(z_{k}\right)_{k=0}^{\infty}$ be a sequence of complex numbers with $\left|z_{k}\right|=d_{k+1}^{-1}$. Then for each sequence $\left(a_{k}\right)_{k=0}^{\infty}$ of complex numbers such that

$$
\lim _{n \rightarrow \infty} \sup \left|a_{n}\right|^{1 / n}<\left[W_{\mathscr{O}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)\right]^{-1}
$$

there exists an uniquely determined sequence $\left(c_{m}\right)_{m=0}^{\infty}$ of complex numbers with

$$
\limsup _{m \rightarrow \infty}\left|c_{m}\right|^{1 / m}<\left[W_{\mathscr{D}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)\right]^{-1}
$$

such that

$$
\begin{equation*}
e_{n} \sum_{m=n}^{\infty} \frac{e_{m-n}}{e_{m}} c_{m} z_{n}^{m-n}=a_{n} \quad \text { for } \quad n=0,1,2, \ldots \tag{4.1}
\end{equation*}
$$

In other words: for each function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ holomorphic in the disc $|z| \leqslant W_{\mathscr{D}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)$ there exists a uniquely determined function $g(z)=\sum_{m=0}^{\infty} c_{m} z^{m i}$ holomorphic in the disc $|z| \leqslant W_{\mathscr{O}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)$ such that

$$
\begin{equation*}
e_{n} \mathscr{D}^{n} g\left(z_{n}\right)=\left(f^{(n)}(0)\right) / n!\quad \text { for } \quad n=0,1,2, \ldots \tag{4.2}
\end{equation*}
$$

Proof. In view of Theorem A the constant $W_{\mathscr{D}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)$ exists and satisfies $W_{\mathcal{S}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)<\infty$.

Choose a number $R>0$ such that $\lim \sup \left|a_{n}\right|^{1 / n} \leqslant 1 / R<\left[W_{\mathscr{A}}\left(\left(z_{k}\right)_{k=0}^{\infty}\right)\right]^{-1}$, then by Proposition 3 and Proposition 4 for each $r<R$ there exists a number $r^{\prime}<R$ and a constant K such that

$$
e_{n}^{-1}\left\|Q_{n}\right\|_{r} \leqslant K r^{\prime n}
$$

Now an $\epsilon>0$ such that

$$
r^{\prime}\left(\frac{1}{R}+\epsilon\right) \leqslant 1
$$

for this $\epsilon>0$ there exists a number $N_{\varepsilon}>0$ with

$$
\left|a_{n}\right| \leqslant\left(\frac{1}{R}+\varepsilon\right)^{n} \quad \text { for each } \quad n \geqslant N_{\varepsilon} .
$$

It follows that

$$
\left|a_{n}\right| e_{n}^{-1}\left\|Q_{n}\right\|_{r} \leqslant K\left(\frac{1}{R}+\epsilon\right)^{n} r^{\prime n} \leqslant K
$$

for each $n \geqslant N_{\varepsilon}$.
This implies

$$
\begin{equation*}
\sup _{0 \leqslant n<\infty}\left|a_{n}\right| e_{n}^{-1}\left\|Q_{n}\right\|_{r}<\infty \tag{4.3}
\end{equation*}
$$

for each $r<R$. (Compare (3.2)).
The polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ constitute a basis in $\mathscr{F}_{R} ;$ now by the theorem of Dynin-Mitiagin on the absoluteness of a basis in a nuclear Fréchet space (see Mitiagin [14] or Pietsch [15]) we have that for each $r<R$ there exists a number $r^{\prime}<R$ such that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left\|Q_{n}\right\|_{r}}{\left\|Q_{n}\right\|_{r^{\prime}}}<\infty \tag{4.4}
\end{equation*}
$$

(see Rolewicz [17] pg. 189).
Collecting the last results we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|a_{n}\right| e_{n}^{-1}\left\|Q_{n}\right\|_{r} & =\sum_{n=0}^{\infty}\left|a_{n}\right| e_{n}^{-1}\left\|Q_{n}\right\|_{r^{\prime}} \frac{\left\|Q_{n}\right\|_{r}}{\left\|Q_{n}\right\|_{r^{\prime}}} \\
& \leqslant \sup _{0 \leqslant n<\infty}\left|a_{n}\right| e_{n}^{-1}\left\|Q_{n}\right\|_{r^{\prime}} \sum_{n=0}^{\infty} \frac{\left\|Q_{n}\right\|_{r}}{\left\|Q_{n}\right\|_{r^{\prime}}}<\infty
\end{aligned}
$$

Since \mathscr{F}_{R} is a complete space and the polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ constitute a basis in \mathscr{F}_{R}, there exists a function $g \in \mathscr{F}_{R}$ with

$$
\mathscr{D}^{n} g\left(z_{n}\right)=a_{n} e_{n}^{-1}
$$

and Proposition 6 is proved.

References

1. J. D. Buckholtz, Zeros of partial sums of power series, II, Michigan Math. J. 17 (1970), 5-14.
2. J. D. Buckholitz, The Whittaker constant and successive derivatives of entire functions, J. Approximation Theory 3 (1970), 194-212.
3. J. D. Buckholtz and J. L. Frank, Whittaker constants, Proc. London Math. Soc. 23 (1971), 348-370.
4. M. M. Dragilev, On the convergence of Abel-Gončarov interpolation series, Uspehi Mat. Nauk 15, No. 3 (1960), 151-155.
5. M. M. Dragleev and O. P. Cuhlova, On the convergence of certain interpolation series, Sibirsk. Mat. Z. 4 (1963), 287-294.
6. M. A. Evgrafov, "Interpolyacionaya Zadača Abelya-Gončarova," Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1954.
7. J. L. Frank and J. K. Shaw, Abel-Gončarov polynomial expansions, J. Approximation Theory 10 (1974), 6-22.
8. A. O. Gel'fond and A. F. Leont'bv, On a generalization of Fourier series, Mat. Sbornik N. S. (71) 29 (1951), 477-500.
9. W. Gončarov, Recherches sur les dérivées successives des fonctions analytiques, Ann. Sci. Ecole Norm. Sup. 47 (1930), 1-78.
10. F. Haslinger, Complete biorthogonal systems in nuclear (F)-spaces, Math. Nachr. 83 (1978), 305-310.
11. F. Haslinger, On Newton's interpolation polynomials, J. Approximation Theory 22 (1978) 352-355.
12. F. Haslinger, Abel-Gončarov polynomial expansions in spaces of holomorphic functions, J. London Math. Soc., in press.
13. G. Kӧтне, "Topological Vector Spaces," Springer-Verlag, Berlin, 1966.
14. B. S. Mitiagin, The approximative dimension and bases in nuclear spaces, Uspehi Mat. Nauk 16, No. 4 (1961), 63-132.
15. A. Pietsch, "Nukleare Lokalkonvexe Räume," Akademie-Verlag, Berlin, 1965.
16. M. Pommiez, Sur les zéros des restes successifs des séries de Taylor, Ann. Fac. Sci. Univ. Toulouse 4 (1960), 77-165.
17. S. Rolewicz, "Metric Linear Spaces," Monografie Matematyczne, TOM 56, Warszawa, 1972.
